Smallest covering regions and highest density regions for discrete distributions

نویسندگان

چکیده

Abstract This paper examines the problem of computing a canonical smallest covering region for an arbitrary discrete probability distribution. optimisation is similar to classical 0–1 knapsack problem, but it involves over set that may be countably infinite, raising computational challenge makes non-trivial. To solve we present theorems giving useful conditions optimising and develop iterative one-at-a-time method compute region. We show how this can programmed in pseudo-code examine performance our method. compare algorithm with other algorithms available statistical computation packages HDRs. find only one accurately computes HDRs distributions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Regions for Bivariate Distributions

For a one-dimensional probability distribution, the classical concept of central region as a real interquantile interval arises in all applied sciences. We can find applications, for instance, with dispersion, skewness and detection of outliers. All authors agree with the main problem in a multivariate generalization: there does not exist a natural ordering in n-dimensions, n > 1. Because of th...

متن کامل

Off-center Hii Regions in Power-law Density Distributions

The expansion of ionization fronts in uniform and spherically symmetric power-law density distributions is a well-studied topic. However, in many situations, such as a star formed at the edge of a molecular cloud core, an offset power-law density distribution would be more appropriate. In this paper a few of the main issues of the formation and expansion of HII regions in such media are outline...

متن کامل

Packing and Covering with Non-Piercing Regions

In this paper, we design the first polynomial time approximation schemes for the Set Cover and Dominating Set problems when the underlying sets are non-piercing regions (which include pseudodisks). We show that the local search algorithm that yields PTASs when the regions are disks [5, 19, 28] can be extended to work for non-piercing regions. While such an extension is intuitive and natural, at...

متن کامل

Smallest Organism; Highest Threat

Ever since the discovery of virus in beginning of 20th century, infections caused by these organisms have captured attention of researchers. The evolution of viruses is still a controversy, even same for their categorization in either living or non-living. It is clear that besides many controversies virus remains challenging to treat as well as to control in some extent. Though vaccines are ava...

متن کامل

Covering Simple Polygonal Regions by Ellipses

We study the problem of how to cover simple polygonal rectilinear regions by a small set of axis–parallel ellipses. This question is well motivated by a special pattern recognition task where one has to identify ellipse shaped protein spots in 2–dimensional electrophoresis images. We present and discuss various algorithmic approaches towards this problem ranging from a brute force method, to a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Statistics

سال: 2022

ISSN: ['0943-4062', '1613-9658']

DOI: https://doi.org/10.1007/s00180-021-01172-6